
NASA-CR-192735

i.kr i_.

c 14 sse - _.

_AGW=1333

J

/j __.;j...;)2-

/L;-'>'"/_

_j _S

qq

I

Center for Intelligent
Robotic Systems
for Space Exploration

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

(NASA-CR-192735) TASK SEQUENCE

PLANNING IN A ROBOT _ORKCELL USING

AND/OR NETS (Kensselaer

Polytechnic Inst.) 25 p

N93-21391

Unclas

G3/63 0153758



TASK SEQUENCE PLANNING IN
A ROBOT WORKCELL

USING AND/OR NETS

by

Tiehua Cao and Arthur C. Sanderson

_TTECHNICALREP_._R,
Rensselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering

Troy, New York 12180-3590

,Fr.,N_NEERIN{.;a._ rHYSICAL
SCIENCESL_L_RARY

131991

UBIVERSITY OF MARYLAND

COLLEGEPARK.MARYLAND

June 1991

CIRSSE REPORT #94

SIIIOd]HIV:IINH3]I



Published in: Proceedings of the 1991 IEEE Intelligent Control Symposium

Task Sequence Planning in a Robot
Using AND/OR Nets

Workcell

Tiehua Cao and Arthur C. Sanderson

\

Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute

Troy, NY 12180-3590, USA

June 4, 1991

Abstract

This paper describes an approach to task sequence planning for a generalized robotic manu-

facturing or material handling workcell. Given the descriptions of the objects in this system

and all feasible geometric relationships among these objects, an AND/OR net which de-

scribes the relationships of all feasible geometric states and associated feasibility criteria for

net transitions is generated. This AND/OR net is mapped into a Petri net which incorpo-

rates all feasible sequences of operations. The resulting Petri net is shown to be bounded

and have guaranteed properties of liveness, safeness and reversibility. Sequences are found

from the teachability tree of the Petri net. Feasibility criteria for net transitions may be

used to generate an extended Petri net representation of lower level command sequences.

The resulting Petri net representation may be used for on-line scheduling and control of the

system of feasible sequences. A simulation example of the sequences is described.

Keywords

Task sequence planning, Petri net, AND/OR network, reachability, coverability, markings.



1 Introduction

An automatic planning system is an essential part of a complete robotic system. A typ-

ical planning system is a hierarchical top-down structure. Before the mechanisms and the

robot start to work, the host computer in the system obtains the initial states and the final

states. The planning system will represent and be able to generate all possible sequences

of operations. Then a certain sequence will be chosen based on some evaluation criterion.

Each operation which is included in this specific sequence will be considered as a sub-goal

at that time. For each sub-goal, the lower level planning work will depend on the feasibility

criteria of the AND/OR net. A lower level command sequence corresponding to each high

level operation will be generated. Each lower level command sequence will be fired and each

command could directly be used to control some mechanisms and the robot. During the

execution, new information might be fed back to the computer, and the control commands

may be updated to coordinate the whole system.

The whole robotic system as well as its environment is in the initial state before the sys-

tem starts working. The intelligent robot should have the ability to analyze the information

it has from the outside world such as the descriptions of the current or initial states, the

knowledge base that represents the set of conditional statements which defines the knowledge

in the problem domain, and also the final states the system is expected to reach, and then

reason so that it could automatically obtain all possible operation procedures to reach the

final states.

Task-level planning[I] provides a high-level sequencing of actions which satisfy domain

constraints and ordering relations to accomplish a given task goal. Many domain-independent

planning techniques and systems have been developed[2-4]. Most of these planning methods

use search techniques developed in the artificial intelligence area. In robot workcells, and

particularly assembly, domain-dependent planning methods are often more effective since

they represent and reason about domain-related constraints[5-11]. The aim of task level

planning is to efficiently generate all possible task sequences and to be able to choose among

them. Some sequences may contain fewer operation steps, and each different kind of opera-

tion may have a different cost function. Some sequences may also contain parallel operations

to save total time needed to fulfill the task. Depending on the task domain and application,

we may have alternative cost functions, such as economic cost, minimum time, or maximum

reliability, or we may require only that any feasible solution be found.



2 AND/OR Net Representation of the System

The representation of assemblyplans in our previous work is basedon an AND/OR
graph[5,8]. AND/OR graphshave and-arcs connecting one initial node to k terminal nodes.

We review the basic definition of AND/OR graphs as follows:

Definition 1 An AND/OR graph is a pair of sets (V, I'D in which V is a finite set, and H

is a subset of the cartesian product V x (lI(V) - {0}), where rI(v) is the set of all subsets

of V.

The elements of V are called nodes, and the elements of H are called and-arcs. For an

and-arc (A, A), the node A is the initial node, and the nodes in A are the terminal nodes.

The and-arc (A, A) is incident from A and is incident to the nodes in A. The and-arc (A, A)

is said to connect node A to the nodes in A.

In this section, we introduce the AND/OR net representation as a means to effectively

represent geometric relations and constraints among objects and devices in the system. We

are given a complete geometric description of objects and object relations, and have extended

the AND/OR graph described above to represent more general relationships among objects

as system substates. The AND/OR net is defined as follows:

Definition 2 Pair-match set F: Given two finite sets E1 = {al, a2,..., am}, E_ = {bl, b2,

...,
tt

F(E1,E2) = _.) U{{ai, bj}}
i=I j=l

Definition 3 An AND/OR net is a three-tuple (S, A, IV) where S is a finite set of states

(sl,s2,...,s,), A C_ F(S,I'I(S)- {0}), N C_ I'(S,S), and ANN = 9, where I-I(S) is the set

of all subsets of S.

The elements of S are called nodes, the elements of A are called AND-arcs, and the ele-

ments of N are called [ST-arcs. The AND-arcs {A, _} is said to connect node A to the nodes

in _, _ C_ S. The IST-arc {At,t2} is said to connect node A1 to the node .\2. IST represents

[nternaI State Transition.

The definition of the system geometric states diagram is:

Definition 4 System geometric states diagram lists all objects 0i in the system and all

possible states 0i k corresponding to each object. All possible assemblies of n objects, and

3



\

all possiblesubassembliesof m objects are special cases of objects, and subassemblies may

be derived directly from assemblies.

Note that in this discussion, a subassembly reflects any geometric configuration of con-

tacting parts, including, for example, a robot holding a part. The system states diagram

orders the representation of subassemblies by number of parts n. Each subassembly of order

n may be further decomposed into l"[(n) subassemblies. Only those decompositions which are

geometrically feasible are included in the AND/OR net. In addition, objects with internal

state changes are indicated by links.

The AND/OR net is derived from the system geometric states diagram. The nodes in

the AND/OR net correspond to all objects, which may be subassemblies and assemblies,

appearing in the geometric states diagram. The AND-arcs represent the feasible decomposi-

tions from subassemblies(assemblies) to a corresponding set of subassemblies. The IST-arcs

represent the feasible internal state transitions from a subassembly(assembly) to another

subassembly(assembly). These two subassemblies(assemblies) are listed in the same column

in the geometric states diagram and contain the same number of original objects.

An example of an AND/OR net definition is shown in figures 1 to 3. Figure 1 shows a

robot which transfers an object to the surface of a table. The initial states and final states

are presented in figure 1. All feasible geometric relationships among these objects are shown

in the geometric states diagram in figure 2.

The maximum number of steps of generating the final diagram is C_ + C_ + ... + C_ =

2 '_ - 1, where n is the number of objects in the system and C_ indicates the combinations

of n. Within each step, we may obtain more than one configuration of contacting objects.

The resulting AND/OR net state diagram is shown in figure 3 and is based on the feasible

decompositions of subassemblies of order n to subassemblies of order no more than n - 1. In

the next sections, we will describe the mapping of this AND/OR net to a Petri net.

Methods for extracting all possible sequences from the AND/OR graph or AND/OR tree

representation of the system will not work in this case. First, because cycles may appear

in an AND/OR net, more difficulties may be met when we use the methods developed in

AND/OR graphs for automatically searching task sequences. Secondly, depending on the

definition, an AND/OR net possesses the special characteristic of reversibility. Last, we may

consider AND/OR graphs or AND/OR trees as subsets of AND/OR nets. Therefore, it is

necessary to introduce a searching algorithm for AND/OR nets.



|

/ Table Robot Solid
/

(_)

/
Solid

Table Robot
/

(b)

Figure 1. Example of a Moving Task for a Robot

(a) Initial states (b) Final states



T

H

R

ONE OBJECT

H

TWO OBJECTS THREE OBJECTS

SR

R

Figure 2. System Geometic States Diagram



3

O
Figure 3. The AND/OR net representation for the example

Mapping AND/OR Net to Petri Net

The Petri net has been widely used in modeling manufacturing systems, computer sys-

tems, and robot assembly planning systems as well as other kinds of engineering applications[12-

19]. This is an efficient abstract and formal information flow model. The Petri net is char-

acterized by its flexibility and efficiency in modeling and analysis of complex discrete-event

systems. The definition and some relating terminologies are shown as follows.

Definition 5 A Petri net structure, N, is afour-tuple, N= (P,T,a,_). P = {pl,p2,.. .,p,_}

is a finite set of places, n >_ O. T = {tl,t2,...,t,n} is a finite set of transitions, m > O; P n

T=9. a C {P × T} andfl C_ {T× P} are sets of directed arcs.

Definition 6 Marking g: Marking # of Petri net Nis a mapping from set P to set A = {0,

1, 2, ..., L} which is a finite set, i.e.,

/2:P_A,

where/2 sets tokens to every place in N,/2; =/_(p,) E A indicates the number of tokens in

place pi, # can be in the form:

t2 = (#l,/22,...,#n)T; /2i = /2(Pl), Pi E P.

Definition 7 Marked Petri net M: A Petri net structure N containing a marking # is a

marked Petri net which is the following five-tuple,

M =(P,T,a, t3,/2)

Sometimes, for the sake of simplicity, we refer to a marked Petri net as a Petri net as

shown later in this paper.

] 7



|

,i

Definition 8 Petri net graph: The Petri net graph consists of directed arcs and two kinds

of nodes. In the graph, circle node and bar node represent place and transition respectively.

Directed arc, which links circle node and bar node, indicates the relation between place and

transition. Marking # is shaped by solid dots in a circle node.

One important property of a Petri net is the representation of serial and concurrent events

and resource constraints. For this system, we use Generalized Stochastic Petri Nets(GSPN)

software[20,21] to represent the system and carry out some simulations as well as verifying

the task sequences.

Each node in the AND/OR net becomes a place in the Petri net. All transitions in the

system AND/OR network can occur in either direction. Based on this property, we can map

each AND/OR net transition into two directed transitions in the Petri net. One difference

between the AND/OR net and Petri net is that the same state in the AND/OR net could

appear more than one time. Thus the Petri net is a less efficient representation of the system

states, but offers advantages in modeling the generation of sequences.

For a transition {)_1, _2} E N in an AND/OR net, the mapping to elements in a Petri

net is defined as a function .T'I, where

.r,({:,,, =

For a Transition {_, ¢} E A in an AND/OR net, the mapping to elements in a Petri net

is defined as a function .T'2, where

k k

¢}) = U U U(t , • ¢.
i=l i----1

7

The algorithm for converting the AND/OR net to Petri net is shown as follows:

Algorithm 1 Mapping from AND/OR net to Petri net.

Input: AND-OR net NA = (S, A, N).

Output: Petri net Np = (P, T, a, 13).

1. initialize P = T = _ = 13 = 0, np -- nT = 0;

2. for each set ni E N, ni = {nil,hi2}

begin

add 2 transitions t,,p+l, t.p+2,

8



| '

Figure 4. The Petri net representation for the example

T = T U{tn.+l,t..+=};
np -- np+ 2;

check whether nix,hi2 is in P,

ifnil not in P, P = PU{nil};

ifn_ 2 not in P, P = PU{n;2};

,_= ,_U((n., t,,.+,), (ni_,t,,,.+_)};
= _U{(t,,.+,,.,_), (t,,,.+_,n.)};

end

3. for each set ai E A, ai = {ax,_b,}

begin

add 2 transitions the+l, t,_p+2,

T = TU{t,p+l, t,p+2};

np= np+ 2;

for every ej E {{a_} U¢,} and {ej} DP = 0,

P = P U{ej};

= aUUj{(a_,t_e+l), (ej,t,_e+2)} , for all ej;

fl = j31.Jl.Jj{(t,_e+_,ax),(t,,e+2,ej)}, for all ej;

end

Such a Petri net representation for the example in figure 1 is shown in figure 4. The

initial marking of one token in places S, R and T represents the initial states, i.e., there are

one robot, one table and one solid available and they are geometrically independent for the

time being. The following properties of the resulting Petri net may be shown as follows:

9



I
t2

(a) One neighbor

tl Q PJ1

pi

p

(b) Two or More neighbors

Figure 5. The Connectedness with Pi and its

neighboring Places

Theorem 1 The Petri net mapped from an AND/OR net is safe.

Proof." Because the Petri net is mapped from an AND/OR net, we should clarify the mean-

ings of AND_arc and IST_arc again. The IST_arc in the AND/OR net corresponds to the

internal geometric state change inside an object. All possible assemblies of n objects, and

all possible subassemblies of m objects are special cases of objects. The AND_arc in the

AND/OR net corresponds to combining geometric state changes among two or more objects.

Suppose C = (P, T, a,/3) with initial marking _. Choose any place pi E P, #' E R(C, #),

if we could verify that #'(pi) _< 1, then the proof is complete.

Pi might connect with neighboring places in two ways(figure 5).

Case 1: Corresponding to the internal change of geometric state of an object or a relating

set of objects in the system(figure 5(a)).

Suppose #'t(P_) -> 2. For simplicity, we assume #'t(Pi) = 2. There should exist t' < t such

that #e(Pi) = 1 and I_e+x(pi ) = 2. Therefore at time t', #,,(pl) = P'e(PJ) = 1 pj and pi are

neighboring places in the Petri net. Because the Petri net is mapped from the AND/OR net

10



, |

and this case concerns the internal geometric change, we conclude that at the same time t',

the two possible internal feasible states of a single object or a relating set of objects could

appear simultaneously. The contradiction is thus obtained.

Case 2: Corresponding to the change of interrelationship among two or more objects in

the system.

(i) p_ is as shown in Figure 5(b).

Also suppose I_',(pi) = 2. There should exist t' < t such that/_'t,(Pi) = 1 and/_'t'+l(P;) = -.9

, = #,,(pj°)= = .. = , ,Therefore at time t', g't,(Pl) I_t,(Pj1) I_'t,(PJ2) " I_'t,(P_k) = 1, ),...,

"", #'t,(PJ,) are combining neighboring geometric states in the AND/OR net, 1 _< u _< k.

We conclude that at the same time t', the two possible combining geometric states, which

include exactly the same objects, could appear simultaneously. A contradiction is thus ob-

tained again.

(ii) pi is in the place of Pju as shown in Figure 5(b).

Follow the same procedure as in case 1. We could conclude that at a time t', two pos-

sible combining geometric states, which contain at least one common object, would appear

simultaneously. A contradiction is obtained.

This statement of safeness concerning the Petri net is therefore assured.

Corollary 1 The Petri net mapped from an AND/OR net is bounded.

The corollary is directly derived from Theorem 1 because the number of tokens in any

place cannot exceed 1.

Theorem 2 The Petri net mapped from an AND/OR net is live.

Prove: The Petri net mapped from AND/OR net consists of two kinds of subnet which are

actually loops as shown in figure 5. Therefore, for any transition ti in this Petri net and any

#' E R(C, #), where # is the initial marking, there exists a firing sequence a such that t, is

enabled in 5(# _, a). We thus conclude that the transition ti is live at level 4 and therefore

live. Because ti is an arbitrary transition, the Petri net is thus live.

Theorem 3 The Petri net mapped from an AND/OR net is reversible.

11



Prove: As shown in the proof of Theorem 2, the Petri net is a set of loops according to the

mapping definitions. Therefore, the initial marking is reachable from all reachable markings.

The Petri net is thus reversible.

The live Petri net guarantees a deadlock-free system. The boundedness property en-

sures that the capacity is not exceeded. And the reversibility implies that the system can

re-initialize itself, and it is important for the automatic recovery from errors and failures.

Therefore, if a robotic assembly or handling system is represented as an AND/OR net, it

is not only convenient for the system to generate task plans, but also the controller will

supervise and coordinate the system more efficiently.

This mapped Petri net does not satisfy the property of conservation because of the geo-

metric characteristics of the system.

4 Data Structure for Searching Sequences in Petri Net

The task planning problem is concerned with reachable markings when the system has

been modeled with a Petri net. The reachability problem is the most basic Petri net anal-

ysis problem[13]. Many other analysis problems can be stated in terms of the reachability

problem.

Definition 9 The Reachability Problem: Given a Petri net C with marking # and a marking

#', is #' R(C,#)?

Another problem which is similar to teachability but is slightly different is called the

coverability problem. A marking #" covers a marking #' if #" _> #'.

Definition 10 The Coverability Problem: Given a Petri net C with initial marking # and

a marking #', is there a reachable marking #" E R(C,#) such that #" > #'?

Briefly speaking, finding a possible sequence is concerned with the reachability problem

and finding all possible sequences is concerned with the coverability problem.

Before we describe the algorithm for obtaining the reachability tree for the system

Petri net, we state some useful definitions, i.e., frontier nodes, terminal nodes and dupli-

cate nodes[13]. The following algorithm is different from general teachability algorithms in

the sense of the generation of leaves and the stopping criteria for the developing of the tree

because our resultant Petri net will have no dead marking as we have shown before.

12



\

Definition 11 Frontier nodes, terminal nodes and duplicate nodes When we develop the

reachability tree, all current new markings are called frontier nodes. The markings, in which

no transition is enabled or depending on some criterion, no further transitions are necessary,

are called terminal nodes. The markings which have previously appeared in the tree are

called duplicate nodes.

In the system Petri net, we define the states of the system as markings. The algorithm

therefore begins by defining the initial marking, which corresponds to the initial state in the

system, to be the root of the tree. The final state of the system is defined as the final marking

in the Petri net. All leaves in the reachability tree are defined to be the final marking. The

algorithm is based on a breadth-first forward chaining criterion.

Algorithm 2 The generation of the teachability tree.

Input: Petri net Np = (P, T, a, _,/_0), final marking #l"

Output: The corresponding reachability tree.

Let z be a frontier node to be processed.

1. If there exists another node y in the tree which is not a frontier node, and

has the same marking associated with it,/_[x] =/_[y], then classify node z as a

duplicate node.

2. If the marking/_[x] = #l, then classify node z as a terminal node.

3. For all transitions tje T which are enabled in /_[x], [i.e., 5(#[x],tj) is de-

fined], create a new node z in the reachability tree. The marking #[z] associated

with this new node is, for each place pi, p[z]i = 5(/_[x], tj)i.

An arc, labeled tj, is directed from node x to node z. Node z is redefined as an

interior node; node z becomes a frontier node.

4. When all nodes have been classified as terminal, duplicate, or interior, dupli-

cate nodes will copy all descendants from its corresponding nodes. Then duplicate

nodes will be reclassified as interior nodes.

5. When all nodes have been classified as terminal or interior, the algorithm

stops.

Following the algorithm shown as above, we could generate a reachability tree for the

sample Petri net shown in Figure 4 and finally we could obtain the assembly sequences

required. In this case, only one shortest sequence is available. The sequence of transition

13



!
\

firings and the correspondingsequenceof markings are shown in figure 6. Note that the

sequenceof places in markings are: R, S, T, SR, ST and RST, respectively.

5 Task Sequence planning for a Practical Problem

In this section we consider a practical problem using the methods described above. Our

solutions to this problem will still be based on the task geometric descriptions. The states

of the system is completely decided by the geometric relationships amongst the objects and

their internal geometric states. Each efficient operation which will be represented as a cor-

responding transition in the Petri net acting inside the system will cause the changes of

feasible geometric states.

The system consists of a robot, two tables and a book. Figure 7 shows an initial state

and the desired final state which could be mapped to the geometric descriptions. The only

difference between these two states is where the book is. Therefore, we consider all feasible

geometric states for one object, within two objects and among three objects(figure 8). For

this problem, we assume the maximum size of the robot gripper is not large enough for the

robot to grasp the book when the book is fully lying on the table. It is thus necessary to

first move the book to the edge of the table and try to pick up the book from one side of

the book. This is the reason why we distinguish two cases for the connectedness of the book

and a table. For the connectedness of three objects, the cases are a little bit more complex

because of the relative geometric relations between the book and table. When the book is

on the edge of the table and the robot is touching one side of the book from our view, we

ignore the place of the robot relative to the table, i.e., (T1BR)4 and (T2BR)4 may include

two kinds of geometric relations.

From the system geometric states diagram, we obtain the AND/OR net representation

for the moving task(figure 9). For simplicity of the figure, the net is shown as separate sub-

nets, but because of the common nodes in each subnet, it is really a connected net. We map

this AND/OR net to the Petri net(figure 10) following Algorithm 1 described before. The

description for each operation could be deduced from the Petri net and the corresponding

system geometric states descriptions. By searching the reachability tree of this Petri net and

following the Algorithm 2, we obtain all possible task sequences and the optimal sequence

or the fewest-number-step sequence in this case is shown as follows.

14



t 2__t 1 R

(a) Transition fireable: tl

Marking: 111000

Operation: None

t2 tl R

(b) Transition fireable: t2, ta

Marking: 001100

Operation: Robot grasps solid

2___ 1 R

(c) Transition fireable: t4, ts

Marking: 000001

Operation: Robot reaches table

t 2__I ____t1 R

(d) Transition fireable: t6

Marking: 100010

Operation: Robot leaves table

Figure 6. The sequence of markings and corresponding operations

15



/
Book

Table 1

r f

Robot
Table 2 U _/

(a)

/ Table 1

Book

Robot T le 2

(b)

Figure 7. A Robot Moves a Book from Table 1 to Table 2

(a) Initial states (b) Final states

16



T,
I

T2

I

B

R

ONE OBJECT

!

U

I I

(BT_)_

TWO OBJECTS

B

I I
__ !

B

(BT2)_ B

I I ,

(BT_h B

THREE OBJECTS

(T1BR)I

(TIBR)2

(TIBR)3

(T_BR)4

(T2BR)_

(T2BR)2

(T2BR)3

(BR)

[
B

(T2BR)4

B 1_

!

U_U

m- _ _ i

UT_U

_B _,

UaU

llaU
B

Ur_

t _ _ !

U_U

_._B
! _ _ i

U_LI

| __ I

UT_U
B

Figure 8. System Geometric States Diagram for Moving Book
17



i (BR) ]

(BR) ]

@__2
t

@

ll

\

Figure 9. The AND/OR net representation for Moving Book

18



\

p(BTI}I

\

T2

TI

p('T'1BR)I

t16

117

t18

_T_BR)2

Figure 10. The Petri net representation for Moving Book

19



B

| _ i

Initial States

(2) R_ B

! _ _ !

U_U

B
UT_U

(4) B R

U_
(5)

(6)

Ur_U

B

! _ !

UT_U

(8) _B
! _ !

UT_U
(9) _B

R! _ _ !

UT_U

(I0)

Ur, U
Final States

B
F'---'3

! _ _ i

U_U

Figure 11. Task Sequences for Moving Book

2O



1. tl0: the robot moves towards table 1 and touches the book which is lying on

the surface of table 1.

2. tl4: the robot forces the book on table 1 to move to the edge of the table.

3. tn: the robot leaves the book and table 1.

4. t6: the robot reaches table 1 again and grasp the book towards the edge of

table 1.

5. t4: the robot which has grasped the book leaves table 1.

6. tls: the robot moves towards table 2 and make the book touch the surface

and lie on the edge of table 2.

7. tiT: the robot leaves the book and table 2.

8. t24: the robot touches the book again but the direction of the gripper has

already been changed.

9. t_s: the robot forces the book to move to the center of the surface of table 2.

10. t2x: the robot leaves the book and table 2 and then go back to its original

place.

This is the only optimal solution which could be found for this problem. This optimal

task sequence is directly perceived through Figure 11. This sequence is obviously reversible.

6 Conclusions

The AND/OR net is introduced as a tool for representation and reasoning about geomet-

ric constraints in a robotic workcell system. A method for mapping the AND/OR network

to a Petri net is provided. We could obtain all possible task sequences by constructing the

reachability tree from the Petri net. This off-line planning system has been implemented.

The ideas presented here can be applied to other robotic planning problems in manufacturing

and non-manufacturing domains.

Acknowledgment

This research is supported by tile Defense Logistics Agency and the NASA Center for Intel-

ligent Robotic Systems for Space Exploration at Rensselaer Polytechnic Institute.

21



References

[1] T. Lozano-Perez, "Task planning," in Robot Motion: Planning and Control, J. M. Brady

et al., Eds. Cambridge, MA: MIT Press, 1982, pp. 473-498.

[2] E. Sacerdoti, A Structure for Plans and Behavior. New York: North-Holland, 1977.

[3] R. Fikes et al., "Learning and executing generalized robot plans," in Readings in Ar-

tificial Intelligence, N. Nilsson and B. Webber, Eds. Palo Alto, CA: Tioga, 1981, pp.

231-249.

[4] D. E. Wilkins, "Domain-independent planning: Representation and plan generation,"

Artificial Intell, vol. 22, no. 3, pp. 269-301, 1984.

[5] L. S. Homem de Mello and A. C. Sanderson, "AN AND/OR Graph Representation of

Assembly Plans," AAAI-86 Proceedings of the Fifth National Conference on Artificial

Intelligence, pp. 1113-1119, 1986.

[6] L. S. Homem de Mello and A. C. Sanderson, "Task Sequence planning for assembly,"

in IMACS World Congress '88 on Scientific Computation, Paris, July, 1988.

[7] L. S. Homem de Mello and A. C. Sanderson, Automatic Generation of Mechanical

Assembly Sequences, Technical Report CMU-RI-TR-88-19, The Robotics Institute,

Carnegie Mellon University, December, 1988.

[8] L. S. Homem de Mello and A. C. Sanderson, "AND/OR Graph Representation of As-

sembly Plans," In IEEE Trans. on Robotics and Automation, Vol. 6, No.2, pp. 188-199,

1990.

[9] A. C. Sanderson, L. S. Homem de Mello, and H. Zhang, "Assembly Sequence Planning,"

AI Magazine: Special Issue on Assembly Planning, Vol. 11, No. 1, Spring, 1990, pp 62-

81.

[10] L. S. Homem de Mello and A. C. Sanderson, "Evaluation and Selection of Assembly

Plans," Proc. 1990 International Conference on Robotics and Automation, pp. 1588-

1593.

[11] L. S. Homem de Mello and A. C. Sanderson, "A Correct and Complete Algorithm

for the Generation of Mechanical Assembly Sequences," IEEE Trans. on Robotics and

Automation, Vol. 7, No. 2, pp. 228-240, 1991.

[12] T. Agerwala, "Putting Petri Net to work," Computer, vol. 12, no. 12, pp. 85-94, 1979.

22



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. L. Peterson, Petri net, Theory and the Modelling of Systems. Englewood Cliffs, N J:

Prentice-Hall, 1981.

P. Alanche et al., "PSI: A Petri Net Based Simulator for Flexible Manufacturing Sys-

tems," in Advances in Petri Net 1984, Lecture Notes in Computer Science 188, G.

Rozenberg, Ed. New York: Springer-Verlag, pp. 1-14.

K.-H. Lee and J. Favrel, "Hierarchical reduction method for analysis and decomposition

of Petri nets," IEEE Trans. Syst. Man Cybern., vol. 15, no. 2, pp. 272-280, 1985.

R. Valette, M. Courvoisier, H. Demmou, J. M. Bigou and C. Desclaux, "Putting Petri

Net to Work for Controlling Flexible Manufacturing Systems," Proceedings of the In-

ternational Symposium on Circuits and Sytems, pp. 929-932, Kyoto, Japan, 1985.

N. Vishwanadham and Y. Narahari, "Colored Petri net models for automated manu-

facturing systems," In Proc. 1987 IEEE Robotics and Automation Conference, pages

1985-1990, Raleigh, NC, 1987.

R. AI-Jaar and A. Desrochers, "Petri Nets for Automation and Manufacturing," Ad-

vances in Automation and Robotics., vol. 2, Ed. G.N. Saridis, JAI Press, 1988.

W. Zhang, "Representation of Assembly and Automatic Robot Planning by Petri Net,"

IEEE Trans. Syst. Man Cybern., vol. 19, no. 2, pp. 418-422, 1989.

M. Ajmone Marsan, G. Balbo, and G. Conte, "A Class of Generalized Stochastic Petri

Nets for the Performance Analysis of Multiprocessor Systems," ACM Transactions on

Computer Systems 2(1), May, 1984.

M. Ajmone Marsan, G. Balbo, G. Chiola, and G. Conte, "Generalized Stochastic Petri

Nets Revisted: Random Switches and Priorities," in Proc. Int. Workshop on Petri Nets

and Performance Models, IEEE-CS Press, Madison, WI, USA, August, 1987.

23


